Instructions for filling out your answer sheet:

1. Use a \#2 pencil only.
2. Print your LAST NAME and then your FIRST NAME in the name field, and then blacken in the bubbles that correspond to the letters of your name. Leave a space between your last and first name; blacken in the blank circle below the blank space.
3. In the Version column, blacken in the version number of the exam.

This is Version 01 Note: You must fill in the zero and the one.

4. Fill in your IU username in the username column and then blacken in the corresponding circles.
5. Fill in only ONE answer for each multiple choice question. If multiple answers are given, no points can be awarded; therefore, make sure you erase your answers well.
6. Do not make stray marks in any other portions of the answer sheet.
7. Failure to follow the above instructions will delay the posting of your grade. If you do not bring problems to our attention within one week, we reserve the right to not make adjustments. It is your responsibility to be about entering your IU username and version number correctly.

You have two hours to complete the exam. This exam has 35 questions ($\mathbf{3 0}$ multiple choice at 2 points each and 5 short answer for 40 points and up to 8 points bonus) for a total of 108 out of 100 points.

1. Legibly put your whole name on the first and last page of the exam in the bank for name.
2. Circle you discussion Al's name.
3. Fill out your scantron completely with correct version number.

Avogadro's \# $=6.022 \times 10^{23}$ things $/ \mathrm{mol}$
Table 8.1 Solubility Rules

$\begin{gathered} H \\ 2.1 \end{gathered}$	
Li	Be
1.0	1.5
Na	Mg
0.9	1.2
K	Ca
0.8	1.0
Rb	Sr
0.8	1.0
Cs	Ba
0.7	0.9

B	C	N	O	F
2.0	2.5	3.0	3.5	4.0
Al	Si	P	S	Cl
1.5	1.8	2.1	2.5	3.0
Ga	Ge	As	Se	Br
1.6	1.8	2.0	2.4	2.8

Many elements have been omitted
to emphasize the basic pattern of
electronegativity variation.

I
2.4

All sodium, potassium, and ammonium salts		
All acetates and nitrates		
Most halides (chlorides, bromides, iodides)	except	Halides of lead(II), silver(I), and mercury(I)
Most sulfates	except	Sulfates of calcium, barium, lead(II), and strontium
Insoluble in water		
Most phosphates, carbonates, and sulfides	except	Sodium, potassium, and ammonium salts; calcium sulfide
Most hydroxides	except	Sodium, potassium, calcium, and barium hydroxides

Rule 1: The oxidation number of an element in its free (uncombined) state is zero - for example, $\mathrm{Al}(\mathrm{s})$ or $\mathrm{Zn}(\mathrm{s})$. This is also true for elements found in nature as diatomic (two-atom) elements and for sulfur, found as: S_{8}

Rule 2: The oxidation number of a monatomic (one-atom) ion is the same as the charge on the ion, for example:
Rule 3: The sum of all oxidation numbers in a neutral compound is zero. The sum of all oxidation numbers in a polyatomic (many-atom) ion is equal to the charge on the ion. This rule often allows chemists to calculate the oxidation number of an atom that may have multiple oxidation states, if the other atoms in the ion have known oxidation numbers.

Rule 4: The oxidation number of an alkali metal (IA family) in a compound is +1 ; the oxidation number of an alkaline earth metal (IIA family) in a compound is +2 .

Rule 5: The oxidation number of fluorine is always -1 . Chlorine, bromine, and iodine usually have an oxidation number of -1 , unless they're in combination with an oxygen or fluorine.

Rule 6: The oxidation state of hydrogen in a compound is usually +1 . If the hydrogen is part of a binary metal hydride (compound of hydrogen and some metal), then the oxidation state of hydrogen is -1 .

Rule 7: The oxidation number of oxygen in a compound is usually -2. If, however, the oxygen is in a class of compounds called peroxides (for example, hydrogen peroxide), then the oxygen has an oxidation number of -1 . If the oxygen is bonded to fluorine, the number is +1

EMF Series

Au
Least active (loses electrons least easily)

\qquad

1) In a molecule having four pairs of electrons around the central atom and a pyramidal shape, how many bonding pairs of electrons does the central atom have?
A) 1
B) 2
C) 3
D) 4
2) In a molecule having three pairs of electrons around a central atom and a trigonal planar shape, how many lone pairs of electrons does the central atom have?
A) 2
B) 0
C) 1
D) 3
3) What is the steric number of the central atom in boron trichloride? (draw dot structure if needed)
A) 1
B) 2
C) 3
D) 4
4) Which of the following chlorine-containing compounds is not polar?
A) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
B) CCl_{4}
C) HCl
D) CHCl_{3}

5) In the drawing of acetaldehyde, $\mathrm{CH}_{3} \mathrm{CHO}$ (above), the largest partial negative charge ($\delta-$) occurs on
A) atom (a).
B) atom (b).
C) atom (c).
D) atom (d).
6) Which of the three phases of matter (solid, liquid, or gas) has particles that are fast-moving and independent of each other?
A) gas
B) solid
C) liquid
D) All of the above feature loose arrangements of particles.
7) Which best indicates the direction of the dipole moment in formaldehyde, $\mathrm{H}_{2} \mathrm{C}=\mathrm{O}$?

(1)

(2)

(3)

(4)
A) drawing (1)
B) drawing (2)
C) drawing (3)
D) drawing (4)
8) Which drawing best represents hydrogen bonding?

(1)
$\mathrm{H}-\mathrm{F}$
(2)

(3)

(4)
A) drawing (1)
B) drawing (2)
C) drawing (3)
D) drawing (4)
9) Which of the following statements about London forces is correct?
A) London forces occur between polar and nonpolar molecules.
B) London forces are relatively weakly attractive.
C) London forces are also called dispersion forces.
D) All the above statements are true.
10) Which substance in each of the following pairs is expected to have the larger London dispersion forces (LDF)?

Set I: Br_{2} or I_{2}

I Br_{2} or I_{2}

Set II: n-butane or isobutane (structures below)
16) Which ions are not spectator ions in the following precipitation equation? (use solubility rules!)

$$
\mathrm{AgNO} 3+\mathrm{NaCl} \rightarrow \mathrm{AgCl}+\mathrm{NaNO} 3
$$

A) Na^{+}and Cl^{-}
B) Ag^{+}and Cl^{-}
C) Ag^{+}and $\mathrm{NO}_{3}{ }^{-}$
D) Na^{+}and $\mathrm{NO}_{3}{ }^{-}$
17) If the following ions $\mathrm{Ca}^{2+}, \mathrm{NO}_{3}{ }^{-}, \mathrm{Na}^{+}$and $\mathrm{SO}_{4}{ }^{2-}$ are placed in a test tube, the precipitate formed is \qquad _.
A) CaSO_{4}
B) NaNO_{3}
C) $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
D) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
18) The net ionic equation for the following acid base neutralization reaction is \qquad .

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

A) $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
B) $2 \mathrm{~K}+(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq}) \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
C) $\mathrm{K}+(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{KOH}(\mathrm{aq})$
D) $2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
19) What is the mass, in grams, of 1.000 mole of diphosphorus pentoxide?
A) 46.98 g
B) 239.03 g
C) 61.96 g
D) 142.0 g
20) 0.3 moles of a certain calcium compound weigh 93 g . This compound may be \qquad .
A) calcium chloride
B) calcium phosphate
C) calcium sulfate
D) calcium nitrate
21) The mass, in grams, of oxygen present in 11.7 g of $\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right) 3$ is \qquad . $\mathrm{MM}_{\mathrm{Al} 2(\mathrm{CO} 3) 3}=234 \mathrm{~g} / \mathrm{mol}$
A) 4.05 g
B) 7.20 g
C) 8.10 g
D) 14.4 g
22) 4 moles of nitrogen reacts with excess oxygen. If this reaction produces 2 moles of nitrogen dioxide, the percent yield is \qquad .

$$
\mathrm{N}_{2}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}
$$

A) 50%
B) 12.5%
C) 100%
D) 25%
23) The maximum number of moles of water that could be produced from 0.5 moles of $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ is \qquad -.

$$
2 \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}+9 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}
$$

A) 4
B) 0.5
C) 2
D) 8
24) Which reactant is present in excess if 40.0 g of CaO react with 1.5 mol of $\mathrm{H}_{2} \mathrm{O}$? $\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}$
A) CaO
B) $\mathrm{H}_{2} \mathrm{O}$
C) $\mathrm{Ca}(\mathrm{OH})_{2}$
D) None of the above, the amounts exactly balance.
25) What is the oxidation state of manganese in the compound KMnO_{4} ?
A) +2
B) -4
C) +4
D) +7
26) Which atom in the compound KClO_{3} has a negative oxidation state?
A) oxygen
B) potassium
C) both chlorine and oxygen
D) both potassium and chlorine
27) Identify the compound that contains bromine with a +3 oxidation state.
A) NaBrO_{2}
B) NaBrO_{4}
C) NaBrO
D) NaBrO_{3}
28) Which of the following is true for the following reaction?

$$
\mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}
$$

A) Magnesium is oxidized.
B) Oxygen is reduced.
C) The oxidation state of magnesium in MgO is +2 .
D) All of the above are true.
29) What is oxidized in the following chemical process?

$$
\mathrm{Fe}(\mathrm{~s})+\mathrm{Cu}\left(\mathrm{NO}_{3}\right) 2(\mathrm{aq}) \rightarrow \mathrm{Fe}\left(\mathrm{NO}_{3}\right) 2(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s})
$$

A) $\mathrm{NO}_{3}^{-}(\mathrm{aq})$
B) $\mathrm{Fe}(\mathrm{s})$
C) $\mathrm{Cu}(\mathrm{s})$
D) $\mathrm{Cu}+2(\mathrm{aq})$
30) In the following reaction, is the carbon in methane, CH_{4}, oxidized or reduced and how many electrons does each carbon atom gain or lose?

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

A) Carbon is reduced and gains 4 electrons
B) Carbon is oxidized and loses 8 electrons
C) Carbon is oxidized and gains 4 electrons
D) Carbon is reduced and loses 8 electrons
E) Noneof the above.

b. (2 points) Consider the molecules $\mathrm{H}-\mathrm{Cl}$ and $\mathrm{H}-\mathrm{F}$. Electronegativty values: $\mathrm{H}=2.1, \mathrm{Cl}=3.0, \mathrm{~F}=4.0$

Which of the two molecules has a larger dipole moment?	
Which gas has stronger intermolecular forces?	
Which compound has the higher boiling point?	
Which compound experiences hydrogen bonding?	

c. (BONUS 3 points) Draw one central water molecule surrounded by 4 other water molecules with dotted lines to indicate hydrogen bonding. Be sure each of your water molecules are correctly drawn with the correct number of bonds and lone pairs on the central atom.
32) (8 points total) Chemical Equations
a) (2 pts) Balance the followling equation
\qquad
$\ldots \quad \mathrm{Li}(\mathrm{s})+\ldots \mathrm{N}_{2}(\mathrm{~g}) \rightarrow \ldots \quad \mathrm{Li} 3 \mathrm{~N}(\mathrm{~s}) \quad$ Type of Reaction:
b) (2 pts) Predict products and balance the following equation

$$
\ldots \mathrm{C}_{5} \mathrm{H}_{12}+\ldots \mathrm{O}_{2} \rightarrow \ldots+\ldots \quad \text { Type of Reaction: }
$$

c) (4 points) Use the solubilty rules to answer the following questions. Show all states (1), (g), (s), (aq). Aqueous solutions of magnesium chloride and potassium sulfide are combined. If a reaction occurs, write the molecular,and the net ionic equations. If a reaction does not occur, write NR (no reaction).

Molecular:

Net ionic:
d) (2 points bonus) You need calcium sulfate but there is none available. Using any other ionic compounds, propose an exchange precipitatin reaction for the synthesis of calcium sulfate. Show the balanced equation for your proposed reaction including all states: (l), (g), (s), (aq).
\qquad $+$ \qquad \rightarrow \qquad $+$ \qquad
33) (6 points) Answer the following conversion questions.
a) How many grams of silver are there in 4.0×10^{22} atoms of silver?
b) How many moles of sulfur dioxide are in 40.0 mg of sulfur dioxide?
c) How many grams of caffeine $\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}, \mathrm{MM}=194 \mathrm{~g} / \mathrm{mol}\right)$ would you need to get 4.00×10^{23} carbon atoms?
34) (8 points) Nitrogen gas and hydrogen gas react to form ammonia gas. (show all work for full credit).
a) What is the balanced chemical equation?
b) What is the theoretical yield of ammonia in grams, when $12.0 \mathrm{~g} \mathrm{~N}_{2}$ reacts with $4.00 \mathrm{~g} \mathrm{H}_{2}$? (circle answer)
c) The limiting reactant is: \qquad The excess reactant is: \qquad
d) If 11.3 g of ammonia is actually produced, what is the percent yield of this reaction?
e) (3 points bonus) What amount, in grams, of excess reactant is left-over at the end of the reaction?
35) (8 points) Here is a diagram of a battery made from magnesium and zinc:

a) In the diagram above, label the anode and cathode and draw an arrow above the voltmeter to show the direction of the electron flow.
b)Write the net ionic equation for the spontaneous reaction that occurs in this battery.
c) In which half cell does reduction take place? (circle one)

Reduction occurs in the Mg half cell or Reduction occurs in the Zn half cell
d) Into which half cell will the sulfate ions in the salt bridge flow? (circle one)
the Mg half cell
or
the Zn half cell
e) Over time, which electrode will increase in mass? (circle one) Mg electrode or Zn electrode

Printed Name: \qquad Circle Discussion AI: Amir OR Kristen

Q31 \qquad /10
Q32 \qquad /8
Q33____/6
Q34 \qquad
Q35 \qquad

Total handgrade: \qquad /40 (48 points possible)

Answer Key
Testname: F18 C101 E2

1) C
2) B
3) C
4) В
5) C
6) A
7) C
8) C
9) D
10) D
11) D
12) B
13) B
14) A
15) B
16) B
17) A
18) A
19) D
20) B
21) B
22) D
23) C
24) B
25) D
26) A
27) A
28) D
29) B
30) B
31)
32)
33)
34)
35)

b. (2 points) Consider the molecules $\mathrm{H}-\mathrm{Cl}$ and $\mathrm{H}-\mathrm{F}$. Electronegativty values: $\mathrm{H}=2.1, \mathrm{Cl}=3,0, \mathrm{~F}=4.0$

| Which of the two molecules has a larger |
| :--- | :--- | :--- |
| dipole moment? |\quad| Which gas has stronger intermolecular |
| :--- |
| forces? |\quad| Which compound has the higher boiling |
| :--- |
| point? |

c. (BONUS 3 points) Draw one central water molecule surrounded by 4 other water molecules with dotted lines to indicate hydrogen bonding. Be sure each of your water molecules are correctly drawn with the correct number of bonds and lone pairs on the central atom.

3 pts if correct I pt if partial correct Opt if wrong
32) (8 points total) Chemical Equations
a) (2 pts) Balance the followling equation
opt forbatance $\quad G_{L i}(\mathrm{~s})+\perp \mathrm{N}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Li}_{3} \mathrm{~N}(\mathrm{~s}) \quad$ Type of Reaction: Synthesis (or combination)

+ products
b) (2 pts) Predict products and balance the following equation

I pt for type of rim

$$
\perp \mathrm{C}_{5} \mathrm{H}_{12}+8 \mathrm{O}_{2}-5 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \text { Type of Reaction: Combustion }
$$

c) (4 points) Use the solubility rules to answer the following questions. Show all states (l), (g), (s), (aq).

Aqueous solutions of magnesium chloride and potassium sulfide are combined. If a reaction occurs, write the molecular, and the net ionic equations. If a reaction does not occur, write NR (no reaction).

> Netionic: $2+2-\quad-1 / 2$ for wrong formilag - $1 / 2$ for not balanced $-1 / 2$ for not showijstates
d) (2 points bonus) You need calcium sulfate but there is none available. Using any other ionic compounds, propose an exchange precipitation reaction for the synthesis of calcium sulfate. Show the balanced equation for your proposed reaction including all states: (1), (g), (s), (aq).

2 pts correct 1 pt if have career product w/ state
33) (o points) Answer the following conversion questions. * right ives
a) How many grams of silver are there in 4.0×10^{22} atoms of silver?

$$
4.0 \times 10^{22} \text { atoms Ag } \left\lvert\, \begin{array}{l|l|}
\hline 6.022 \times 10^{23} \mathrm{Ag} & 1079 \mathrm{Ag} \mathrm{Ag} \\
\hline \text { atoms }
\end{array}=\begin{aligned}
& 7.2 \mathrm{gg} \mathrm{Ag} \\
& \hline
\end{aligned}\right.
$$

b) How many moles of sulfur dioxide are in 40.0 mg of sulfur dioxide? SO_{2}

$$
40.0 \mathrm{mg} \mathrm{SO}_{2} \times \frac{1 \mathrm{~g} \mathrm{SO}_{2}}{1000 \mathrm{mg}} \times \frac{1 \mathrm{~mol} \mathrm{s02}}{64 \mathrm{~g} \mathrm{502}}=6.25 \times 10^{-4} \mathrm{~mol} \mathrm{SO} 2
$$

c) How marie grains of caffeine $\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}\right.$, MiMi= $194 \mathrm{~g} /$ moll $)$ would you need to get 400×1023 carbon atoms?
34) (8 points) Nitrogen gas and hydrogen gas react to form ammonia gas. (show all work for full credit).
a) What is the balanced chemical equation?

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}
$$

b) What is the theoretical yield of ammonia in grams, when $12.0 \mathrm{~g} \mathrm{~N}_{2}$ reacts with $4.00 \mathrm{~g} \mathrm{H}_{2}$? (circle answer)
c) The limiting reactant is: \qquad N_{2} The excess reactant is: H_{2}
d) If 11.3 g of ammonia is actually produced, what is the percent yield of this reaction?

$$
\% \text { y yield }=\frac{\text { act }}{\text { their }} \times 100=\frac{11.3 \mathrm{gNH}_{3}}{14.57 \mathrm{gNH}} \times 100=77.5 \%
$$

e) (3 points bonus) What amount, in grams, of excess reactant is left-over at the end of the reaction?

$$
\begin{aligned}
& 4.00 \mathrm{H}_{2}-2.57 \mathrm{~g} \mathrm{H}=1.43 \mathrm{~g} \mathrm{H}_{2} \text { leftover }
\end{aligned}
$$

35) (8 points) Here is a diagram of a battery made from magnesium and zinc:

a) In the diagram above, label the anode and cathode and dray an arrow above the voltmeter to show the direction of the electron flow.

b) Write the net ionic equation for the spontaneous reaction that occurs in this battery.

c) In which half cell does reduction take place? (circle one)
d) Into which half cell will the sulfate ions in the salt bridge flow? (circle one)

Printed Name: \qquad Circle Discussion AI: Amir OR Kristen

Q31 \qquad /10
Q32__-_/8
Q33 \qquad
Q34 \qquad
Q35 \qquad /8

Total handgrade: \qquad /40 (48 points possible)

