Instructions for filling out your answer sheet:

- 1. Use a #2 pencil only.
- 2. Print your LAST NAME and then your FIRST NAME in the name field, and then blacken in the bubbles that correspond to the letters of your name. Leave a space between your last and first name; blacken in the blank circle below the blank space.
- 3. In the Version column, blacken in the version number of the exam.

This is Version 01 Note: You must fill in the zero and the one.

- 4. Fill in your IU username in the username column and then blacken in the corresponding circles.
- 5. Fill in only ONE answer for each multiple choice question. If multiple answers are given, no points can be awarded; therefore, make sure you erase your answers well.
- 6. Do not make stray marks in any other portions of the answer sheet.
- Failure to follow the above instructions will delay the posting of your grade. If you do not bring problems to our attention within one week, we reserve the right to not make adjustments. It is your responsibility to be about entering your IU username and version number correctly.

You have two hours to complete the exam. This exam has 35 questions (30 multiple choice at 2 points each and 5 short answer for 40 points and up to 8 points bonus) for a total of 108 out of 100 points.

- 1. Legibly put your whole name on the first and last page of the exam in the bank for name.
- 2. Circle you discussion Al's name.
- 3. Fill out your scantron completely with correct version number.

Avogadro's # = 6.022x10²³ things/mol

Н 2.1	
Li	Be
1.0	1.5
Na	Mg
0.9	1.2
K	Ca
0.8	1.0
Rb	Sr
0.8	1.0
Cs	Ba
0.7	0.9

В	C	N	0	F
2.0	2.5	3.0	3.5	4.0
AI	Si	Р	s	CI
1.5	1.8	2.1	2.5	3.0
Ga	Ge	As	Se	Br
1.6	1.8	2.0	2.4	2.8
		ve been or		I
	asize the b egativity v	asic patter ariation.	rn of	2.4

Table 8.1Solubility Rules

	Soluble in water	
All sodium, potassium, and ammonium salts		
All acetates and nitrates		
Most halides (chlorides, bromides, iodides)	except	Halides of lead(II), silver(I), and mercury(I)
Most sulfates	except	Sulfates of calcium, barium, lead(II), and strontium
	Insoluble in water	
Most phosphates, carbon- ates, and sulfides	except	Sodium, potassium, and ammonium salts; calcium sulfide
Most hydroxides	except	Sodium, potassium, calcium, and barium hydroxides

C101/F2018 Oxidation State

EMF Series Most active

Rule 1: The oxidation number of an element in its free (uncombined) state is zero — for example, Al(s) or Zn(s). This is also true for elements found in nature as *diatomic* (two-atom) elements and for sulfur, found as: S₈

Rule 2: The oxidation number of a monatomic (one-atom) ion is the same as the charge on the ion, for example:

Rule 3: The sum of all oxidation numbers in a neutral compound is zero. The sum of all oxidation numbers in a *polyatomic* (many-atom) ion is equal to the charge on the ion. This rule often allows chemists to calculate the oxidation number of an atom that may have multiple oxidation states, if the other atoms in the ion have known oxidation numbers.

Rule 4: The oxidation number of an alkali metal (IA family) in a compound is +1; the oxidation number of an alkaline earth metal (IIA family) in a compound is +2.

Rule 5: The oxidation number of fluorine is always –1. Chlorine, bromine, and iodine usually have an oxidation number of –1, unless they're in combination with an oxygen or fluorine.

Rule 6: The oxidation state of hydrogen in a compound is usually +1. If the hydrogen is part of a *binary metal hydride* (compound of hydrogen and some metal), then the oxidation state of hydrogen is –1.

Rule 7: The oxidation number of oxygen in a compound is usually -2. If, however, the oxygen is in a class of compounds called *peroxides* (for example, hydrogen peroxide), then the oxygen has an oxidation number of -1. If the oxygen is bonded to fluorine, the number is +1

Least active (loses electrons least easily)

1 1A 1 Hydrogen 1.008	2 11A 2A					Perio	odic 1	able	of the	e Ele	ments	13 111A 3A	14 IVA 4A	15 VA 5A	16 VIA 6A	17 VIIA 7A	18 VIIIA 8A 2 He Helium 4.003
3 Li Lithium 6.941	4 Be Beryllium 9.012											5 B 10.811	6 Carbon 12.011	7 N Nitrogen 14.007	8 Oxygen 15.999	9 Fluorine 18.998	10 Ne 20.180
11 Na Sodium 22.990	12 Mg Magnesium 24.305	3 IIIB 3B	4 IVB 4B	5 VB 5B	6 VIB 6B	7 VIIB 7B	*		10	11 IB 1B	12 IIB 2B	13 Aluminum 26.982	14 Silicon 28.086	15 P Phosphorus 30.974	16 S Sulfur 32.066	17 Cl Chlorine 35.453	18 Argon 39.948
19 K Potassium 39.098	20 Ca calcium 40.078	21 Sc Scandium 44.956	22 Ti Titanium 47.88	23 V Vanadium 50.942	Cr	25 Mn Manganese 54.938	26 Fe Iron 55.933	27 Co cobalt 58.933	28 Ni Nickel 58.693	29 Cu Copper 63.546	30 Zn _{Zinc} 65.39	31 Ga Gallium 69.732	32 Germanium 72.61	33 As Arsenic 74.922	34 Se selenium 78.09	35 Br Bromine 79.904	36 Kr Krypton 84.80
37 Rb Rubidium 84.468	38 Sr Strontium 87.62	39 Y Yttrium 88.906	40 Zr Zirconium 91.224	41 Nb Niobium 92.906	Мо	43 Tc Technetium 98.907	44 Ru Ruthenium 101.07	45 Rh Rhodium 102.906	46 Pd Palladium 106.42	47 Ag sitver 107.868	Cadmium	49 In 114.818	50 Sn 118.71	51 Sb Antimony 121.760	52 Tellurium 127.6	53	54 Xe Xenon 131.29
55 Cs Cesium 132.905	56 Ba Barium 137.327	57-71	72 Hf Hafnium 178.49	73 Ta Tantalum 180.948	74 W Tungsten 183.85	75 Re Rhenium 186.207	76 Os Osmium 190.23	77 Ir Iridium 192.22	78 Pt Platinum 195.08	79 Au _{Gold} 196.967	80 Hg Mercury 200.59	81 TI Thallium 204.383	82 Pb Lead 207.2	83 Bi Bismuth 208.980	84 Polonium [208.982]	85 At Astatine 209.987	86 Rn Radon 222.018
87 Francium 223.020	88 Ra Radium 226.025	89-103	104 Rf Rutherfordium [261]	105 Dubnium [262]	106 Sg Seaborgium [266]	Bohrium [264]	108 Hs Hassium [269]	109 Mt Meitnerium [268]	110 Ds Darmstadtium [269]	111 Rg Roentgeniu [272]	m Copernicium [277]	m 113 Uut Ununtrium unknown	114 Fl Flerovium [289]	115 Ununpentium unknown	116 Lv Livermorium [298]	117 Ununseptium unknown	118 Ununoctium unknown
	Lanth Ser	ies Lan	thanum Ce	rium Prased	Pr Solution Street	nium Prome	ethium San	narium Eur	opium Gad	olinium T	erbium Dy:	sprosium Ho	lmium Er	bium Thu	ulium Ytte	rbium Lut	LU tetium 4.967
	Actir Ser	nide ies Ac		Th Prota	Pa 92 Uuranii 1.036	um 93	p 94 F Plu	Pu A	ericium 96	rium 97	Bk erkelium Cai	Cf B	Es Feinium	mium 101	Id elevium	lo 103 Lawr	

© 2013 Todd Helmenstine sciencenotes.org

Name

- 1) In a molecule having four pairs of electrons around the central atom and a pyramidal shape, how many bonding pairs of electrons does the central atom have?
 - A) 1
 - B) 2
 - C) 3
 - D) 4
- 2) In a molecule having three pairs of electrons around a central atom and a trigonal planar shape, how many lone pairs of electrons does the central atom have?
 - A) 2
 - B) 0
 - C) 1
 - D) 3
- 3) What is the steric number of the central atom in boron trichloride? (draw dot structure if needed)
 - A) 1
 - B) 2
 - C) 3
 - D) 4

4) Which of the following chlorine-containing compounds is not polar?

- A) CH₂Cl₂
- B) CCl4
- C) HCl
- D) CHCl3

5) In the drawing of acetaldehyde, CH₃CHO (above), the largest partial **negative** charge (δ -) occurs on

- A) atom (a).
- B) atom (b).
- C) atom (c).
- D) atom (d).
- 6) Which of the three phases of matter (solid, liquid, or gas) has particles that are fast-moving and independent of each other?
 - A) gas
 - B) solid
 - C) liquid
 - D) All of the above feature loose arrangements of particles.

7) Which best indicates the direction of the dipole moment in formaldehyde, H₂C=O?

- D) drawing (4)
- 8) Which drawing best represents hydrogen bonding?

- B) drawing (2)C) drawing (3)
- D) drawing (4)

9) Which of the following statements about London forces is correct?

- A) London forces occur between polar and nonpolar molecules.
- B) London forces are relatively weakly attractive.
- C) London forces are also called dispersion forces.
- D) All the above statements are true.

10) Which substance in each of the following pairs is expected to have the larger London dispersion forces (LDF)?

Set I: Br₂ or I₂ Set II: n-butane or isobutane (structures below) I Br₂ or I₂ н Η Η нн -C-H--H II H--H Η C С or Н н н -C- \sim -C--H н н H n-butane н н н isobutane

A) Br2 in set I and isobutane in set II

B) I₂ in set I and isobutane in set II

C) Br₂ in set I and n-butane in set II

D) I2 in set I and n-butane in set II

11) Which of the following chemical substances would you expect to exhibit hydrogen bonding?

A) CH3OH

B) HF

C) NH3

D) all of the above

12) Which of the following will have the lowest boiling point?

A) HOCH2-CH2OH

B) CH₃CH₃

C) CH₃CH₂OH

D) CH3OCH3

13) Which process absorbs (requires) energy?

A) bond formation

B) bond breaking

C) both A and B

D) none of the above

14) Which of the following equations has 1:2:1:1 as the coefficient ratio when balanced?

A) $Zn + HCl \rightarrow H_2 + ZnCl_2$

B) $H_2SO_4 + KOH \rightarrow K_2SO_4 + H_2O$

C) CH₄ + O₂ \rightarrow CO₂ + H₂O

D) NaOH + HCl \rightarrow NaCl + H₂O

15) Which of the following reactions is a decomposition reaction?

A) CaCl₂ + H₂O → CaCl₂ · 2H₂O
B) KClO₃ → KCl + O₂
C) HCl + NaOH → NaCl + H₂O

D) Mg + HCl \rightarrow H2 + MgCl₂

16) Which ions are **not** spectator ions in the following precipitation equation? (use solubility rules!) AgNO3 + NaCl → AgCl + NaNO3

- A) Na+ and Cl⁻ B) Ag+ and Cl⁻
- C) Ag+ and NO₃-
- D) Na+ and NO₃-

17) If the following ions Ca²⁺, NO₃⁻, Na⁺ and SO₄²⁻ are placed in a test tube, the precipitate formed is ______.

- A) CaSO4
- B) NaNO3
- C) Ca(NO3)2
- D) Na₂SO₄

18) The net ionic equation for the following acid base neutralization reaction is _____

 $H_2SO_4(aq) + 2KOH(aq) \neg K_2SO_4(aq) + 2H_2O(l)$

A) H+ (aq) + OH- (aq) → H₂O (l)
B) 2K+ (aq) + SO₄²- (aq) → K₂SO₄ (aq)
C) K+ (aq) + OH-(aq) → KOH (aq)
D) 2H+ (aq) + SO₄²- (aq) → H₂SO₄ (aq)

19) What is the mass, in grams, of 1.000 mole of diphosphorus pentoxide?

- A) 46.98 gB) 239.03 gC) 61.96 g
- D) 142.0 g

20) 0.3 moles of a certain calcium compound weigh 93 g. This compound may be _____.

- A) calcium chloride
- B) calcium phosphate
- C) calcium sulfate
- D) calcium nitrate

21) The mass, in grams, of oxygen present in 11.7 g of Al2(CO3)3 is _____. MMA12(CO3)3 = 234 g/mol

- A) 4.05 g
- B) 7.20 g
- C) 8.10 g
- D) 14.4 g

22) 4 moles of nitrogen reacts with excess oxygen. If this reaction produces 2 moles of nitrogen dioxide, the percent yield is _____.

N2 + 2 O2 \rightarrow 2 NO2

- A) 50%
- B) 12.5%
- C) 100%
- D) 25%

23) The maximum number of moles of water that could be produced from 0.5 moles of C3H8O is ______.

 $2 C_3H_8O + 9 O_2 \rightarrow 6 CO_2 + 8 H_2O$

- A) 4 B) 0.5 C) 2
- C) 2 D) 8
- D) 8

24) Which reactant is present in excess if 40.0 g of CaO react with 1.5 mol of H₂O?

CaO + H₂O → Ca(OH)₂

- A) CaO
- B) H2O
- C) Ca(OH)2
- D) None of the above, the amounts exactly balance.

25) What is the oxidation state of manganese in the compound KMnO4?

- A) +2
- B) -4
- C) +4
- D) +7

26) Which atom in the compound KClO3 has a negative oxidation state?

- A) oxygen
- B) potassium
- C) both chlorine and oxygen
- D) both potassium and chlorine

27) Identify the compound that contains bromine with a +3 oxidation state.

A) NaBrO₂

B) NaBrO4

C) NaBrO

D) NaBrO3

28) Which of the following is true for the following reaction?

Mg + O₂ \rightarrow 2 MgO

- A) Magnesium is oxidized.
- B) Oxygen is reduced.
- C) The oxidation state of magnesium in MgO is +2.
- D) All of the above are true.

29) What is oxidized in the following chemical process?

 $Fe(s) + Cu(NO_3)_{2(aq)} \rightarrow Fe(NO_3)_{2(aq)} + Cu(s)$

A) NO₃- (aq) B) Fe (s) C) Cu (s) D) Cu+2 (aq) 30) In the following reaction, is the carbon in methane, CH₄, oxidized or reduced and how many electrons does each carbon atom gain or lose?

$$CH4 + 2O_2 \rightarrow 2H_2O + CO_2$$

A) Carbon is reduced and gains 4 electrons

B) Carbon is oxidized and loses 8 electrons

C) Carbon is oxidized and gains 4 electrons

D) Carbon is reduced and loses 8 electrons

E) Noneof the above.

1) a. (8 points)	H ₂ O	CO ₂
Dot Structure		
Draw net dipoles if dipoles do not cancel out.		
note: electronegativty values: H=2.1, O=3.5, C=2.5		
electron geometry		
molecular shape		
bond angles (circle)	~180 ~120 ~109.5	~180 ~120 ~109.5
Polar or nonpolar (circle)	polar nonpolar	polar nonpolar
types of intermolecular forces (circle ALL that apply)	london dispersion dipole-dipole hydrogen bonding ion-dipole	london dispersion dipole-dipole hydrogen bonding ion-dipole

b. (2 points) Consider the molecules H–Cl and H–F. Electronegativty values: H=2.1, Cl=3.0, F=4.0

Which of the two molecules has a larger dipole moment?	
Which gas has stronger intermolecular forces?	
Which compound has the higher boiling point?	
Which compound experiences hydrogen bonding?	

c. (**BONUS** 3 points) Draw one central water molecule surrounded by 4 other water molecules with dotted lines to indicate hydrogen bonding. Be sure each of your water molecules are correctly drawn with the correct number of bonds and lone pairs on the central atom.

32) (8 points total) Chemical Equations

a) (2 pts) Balance the followling equation

 $_$ Li(s) + $_$ N₂(g) \neg $_$ Li₃N(s) Type of Reaction: $_$

b) (2 pts) Predict products and balance the following equation

 $__C_5H_{12} + __O_2 \rightarrow ___ + ____$ Type of Reaction:_____

c) (4 points) Use the solubility rules to answer the following questions. Show all states (l), (g), (s), (aq). Aqueous solutions of magnesium chloride and potassium sulfide are combined. If a reaction occurs, write the molecular, and the net ionic equations. If a reaction does not occur, write NR (no reaction).

Molecular:

Net ionic:

d) (2 points bonus) You need calcium sulfate but there is none available. Using any other ionic compounds, propose an exchange precipitatin reaction for the synthesis of calcium sulfate. Show the balanced equation for your proposed reaction including all states: (l), (g), (s), (aq).

+ _____ _____ → _____ + ____

33) (6 points) Answer the following conversion questions.

a) How many grams of silver are there in 4.0×10^{22} atoms of silver?

b) How many moles of sulfur dioxide are in 40.0 mg of sulfur dioxide?

c) How many grams of caffeine (C $_8H_{10}N_4O_2$, MM=194 g/mol) would you need to get 4.00 x 10^{23} carbon atoms?

34) (8 points) Nitrogen gas and hydrogen gas react to form ammonia gas. (show all work for full credit).a) What is the balanced chemical equation?

b) What is the theoretical yield of ammonia in grams, when 12.0 g N2 reacts with 4.00 g H2? (circle answer)

c) The limiting reactant is: ______ The excess reactant is: ______

d) If 11.3 g of ammonia is actually produced, what is the percent yield of this reaction?

e) (3 points bonus) What amount, in grams, of excess reactant is left-over at the end of the reaction?

35) (8 points) Here is a diagram of a battery made from magnesium and zinc:

a) In the diagram above, label the **anode** and **cathode** and **draw an arrow** above the voltmeter to show the direction of the electron flow.

b)Write the net ionic equation for the spontaneous reaction that occurs in this battery.

c) In which half cell does reduction take p	place? (circle	one)				
Reduction occurs in the Mg half cell	or	Reduction occurs in the Zn half cell				
d) Into which half cell will the sulfate ion	d) Into which half cell will the sulfate ions in the salt bridge flow? (circle one)					
the Mg half cell	or	the Zn half cell				
e) Over time, which electrode will increa	se in mass? (o	circle one) Mg electrode or Zn electrode				
Printed Name:		_ Circle Discussion AI: Amir OR Kristen				
Q31/10						
Q32/8						
Q33/6						
Q34/8						

Total handgrade: _____/40 (48 points possible)

Q35 /8

Answer Key Testname: F18 C101 E2

1) C 2) B 3) C 4) B 5) C 6) A 7) C 8) C 9) D 10) D 11) D 12) B 13) B 14) A 15) B 16) B 17) A 18) A 19) D 20) B 21) B 22) D 23) C 24) B 25) D 26) A 27) A 28) D 29) B 30) B 31) 32) 33) 34) 35)

A-11

		4pts	Hets
31)	a. (8 points)	H ₂ O	CO2
1 pt for Jot structure Y2 pt for ret dipole	Dot Structure Draw net dipoles if dipoles do not cancel out. note: electronegativty values: H=2.1, O=3.5, C=2.5	HANN	i = C = O i = + + >'' no net dipole
1/2 pt -	electron geometry	tetrahedral	linear
12:pt-	molecular shape	bent	linear
1/287	bond angles (circle)	~180 ~120 ~109.5	~180 ~120 ~109.5
1/2pt -	Polar or nonpolar (circle)	polar nonpolar	polar nonpolar
1st cach	types of intermolecular forces (circle ALL that apply)	(london dispersion) dipole-dipole hydrogen bonding ion-dipole	dondon dispersion dipole-dipole hydrogen bonding ion-dipole

b. (2 points) Consider the molecules H-Cl and H-F. Electronegativty values: H=2.1, Cl=3.0, F=4.0

Yz pt pach

4pts

Which of the two molecules has a larger dipole moment?	H-F	H - CI
Which gas has stronger intermolecular forces?	H-F	H-F
Which compound has the higher boiling point?	H-F	
Which compound experiences hydrogen bonding?	モーモ	

c. (**BONUS** 3 points) Draw one central water molecule surrounded by 4 other water molecules with dotted lines to indicate hydrogen bonding. Be sure each of your water molecules are correctly drawn with the correct number of bonds and lone pairs on the central atom.

$$H = \begin{array}{c} 0 \\ H \\ H \end{array}$$

3 pts if correct 1 pt if partial correct Opt if wrong 32) (8 points total) Chemical Equations

a) (2 pts) Balance the followling equation

Type of Reaction: Synthesis (or (ombination)

b) (2 pts) Predict products and balance the following equation

pt for type
$$1_{C_5H_{12}} + 8_{O_2} - 5(O_2 + 6H_2)$$
 Type of Reaction: (Ombustion)

c) (4 points) Use the solubilty rules to answer the following questions. Show all states (1), (g), (s), (aq). Aqueous solutions of magnesium chloride and potassium sulfide are combined. If a reaction occurs, write the molecular, and the net ionic equations. If a reaction does not occur, write NR (no reaction).

Molecular:

$$2pts \sum MgCl_2 + K_2S \longrightarrow MgS + 2KCl_{(aq)}$$

 $S_{(aq)}^{2} \rightarrow MgS_{(S)}$

Net ionic:

~

Zots

d) (2 points bonus) You need calcium sulfate but there is none available. Using any other ionic compounds, propose an exchange precipitatin reaction for the synthesis of calcium sulfate. Show the balanced equation for your proposed reaction including all states: (l), (g), (s), (aq). 2 pts correct 1 pt if have correct product w1 istate + risht idea sole

$$\frac{Ca}{(aq)} + \frac{c^{a}}{(aq)} + \frac{c^{a}$$

33) (6 points) Answer the following conversion questions.

(09)

a) How many grams of silver are there in 4.0 x 10²² atoms of silver?

b) How many moles of sulfur dioxide are in 40.0 mg of sulfur dioxide? SO2

c) How many grains of caffeine (C8H10N4O2, MM=194 g/mol) would you need to get 4.00 x 10²³ carbon atoms?

- 34) (8 points) Nitrogen gas and hydrogen gas react to form ammonia gas. (show all work for full credit).a) What is the balanced chemical equation?
 - NZ +3HZ ->ZNH3

b) What is the theoretical yield of ammonia in grams, when 12.0 g N_2 reacts with 4.00 g H_2 ? (circle answer)

$$\frac{12.09 \text{ Nz} (1 \text{ NNz} (2 \text{ m/WH3} (179 \text{ NH3} (17$$

d) If 11.3 g of ammonia is actually produced, what is the percent yield of this reaction?

e) (3 points bonus) What amount, in grams, of excess reactant is left-over at the end of the reaction?

$$\frac{12.0 \text{gN}_2 \text{Im} \text{IN}_2}{28 \text{gN}_2 \text{Im} \text{Im}_2 \text{Im}$$

Mg is higher than 2n on activity series

35) (8 points) Here is a diagram of a battery made from magnesium and zinc:

a) In the diagram above, label the **anode** and **cathode** and **draw an arrow** above the voltmeter to show the direction of the electron flow.

b)Write the net ionic equation for the spontaneous reaction that occurs in this battery.

$$2p^{5}$$
 Mg₍₅₎ + $2n^{2+} \rightarrow Mg^{2+} + 2n(s)$
(ap) (ap)

c) In which half cell does reduction take place? (circle one)

1/stoercy

Q31	/10
Q32	/8
Q33	/6
Q34	/8
Q35	/8

Total handgrade: _____/40 (48 points possible)